Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Sundari Bhaskaran, ${ }^{\text {a }}$
S. Selvanayagam, ${ }^{\text {a }}$
V. Rajakannan, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$
K. Ravikumar, ${ }^{\text {b }}$
A. Mohammed Abdul Rasheed ${ }^{c}$ and P. Rajakumar ${ }^{\text {C }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, ${ }^{\text {b }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.166$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

30,31-Dimethyl-3,26-dioxa-11,18-diazapentacyclo[26.4.0.0 $\left.{ }^{4,9} \cdot 0^{12,17} \cdot 0^{20,25}\right]$ dotri-conta-1(32),4,6,8,12,14,16,20,22,24,28,30-dodecaene-10,19-dione

The title compound, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$, crystallizes in space group $P 2_{1} / n$, with two crystallographically independent molecules in the asymmetric unit. Two of the phenyl rings are perpendicular to one another. The molecular structure is influenced by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions, and the crystal structure is stabilized by C $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions.

Comment

Cyclophane derivatives constitute a novel building block for the potent human immuno deficiency virus (HIV) protease inhibitor (Ettmayer et al., 1996). Cyclophane derivatives act catalytically as cholesterol shuttles to accelerate the exchange of free cholesterol between cells and serum lipo proteins (Christian et al., 1999) and act as potential reversal agents of muscle relaxants by chemical chelation (Cameron et al., 2002). The importance of cyclophane derivatives prompted us to undertake the structure analysis of the title compound, (I).

The asymmetric unit of (I) contains two molecules (A and B), with similar bond lengths and angles.

The $\mathrm{C}-\mathrm{C}$ bond lengths in the phenyl rings $(A, B, C$ and $D)$ are comparable to the reported literature value of 1.384 (13) A. All of the $\mathrm{C}-\mathrm{N}$ bond lengths in both of the molecules also agree with the reported literature values $\left[\mathrm{C}_{s p 2}-\mathrm{N}=1.339(16) \AA\right.$ and $\mathrm{C}_{\text {phenyl }}-\mathrm{N}=1.419$ (17) \AA; Allen et al., 1987].

The exocyclic angles around atoms C16 and C24 show considerable asymmetry, with the $\mathrm{O} 17-\mathrm{C} 16-\mathrm{C} 15$ angle [122.4 (2) ${ }^{\circ}$ for molecule A and $122.9(2)^{\circ}$ for molecule B] being wider than the $\mathrm{O} 17-\mathrm{C} 16-\mathrm{C} 11$ angle $\left[117.2(2)^{\circ}\right.$ for molecule A and $117.8(2)^{\circ}$ for molecule B], and the $\mathrm{C} 19-$ C24-C25 angle [124.5 (2) ${ }^{\circ}$ for molecule A and $122.6(2)^{\circ}$ for molecule B] being wider than the $\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$ angle [117.3 (2) ${ }^{\circ}$ for molecule A and 118.9 (2) ${ }^{\circ}$ for molecule B]. This asymmetry may be due to the short contacts between $\mathrm{H} 15 A \cdots \mathrm{H} 18 B(2.19 \AA), \mathrm{H} 15 B \cdots \mathrm{H} 18 C$ ($1.90 \AA$), $\mathrm{H} 18 A \cdots$ $\mathrm{H} 25 B(2.11 \AA)$ and $\mathrm{H} 25 C \cdots \mathrm{H} 18 B(2.14 \AA)$.

Received 18 August 2003 Accepted 21 August 2003 Online 30 August 2003

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-labelling scheme. H atoms are omitted for clarity.

Figure 2
The packing of the molecules of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

The values of the $\mathrm{C} 33-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3\left[-40.3(3)^{\circ}\right.$ for molecule A and $64.6(3)^{\circ}$ for molecule B] and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 9$ [45.2 (3) ${ }^{\circ}$ for molecule A and $-13.5(3)^{\circ}$ for molecule B] torsion angles indicate that the two amide groups are twisted from the plane of phenyl ring A, with dihedral angles of 39.6 (1) and 44.3 (2) for molecule A, and 66.5 (2) and $14.9(1)^{\circ}$ for molecule B.

Rings B and D are perpendicular to one another, the dihedral angle between their planes being $87.0(1)^{\circ}$ for mol-
ecule A and $90.0(1)^{\circ}$ for molecule B. The dihedral angle between rings B and C is $84.8(1)^{\circ}$ for molecule A and $86.8(1)^{\circ}$ for molecule B, indicating that these two phenyl rings are almost perpendicular to one another.

In addition to the van der Waals interactions, the molecular structure is influenced by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions. The packing of the molecule is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions that run along the $a b$ plane (Fig. 2). In addition, symmetryrelated molecules are also linked by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions, such that atom H5B is $2.91 \AA$ from the centroid of ring D at $\left(\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, with a $\mathrm{C} 5-\mathrm{H} 5 B \cdots$ centroid angle of 161° and a $\mathrm{C} 5-\mathrm{H} 5 B \cdots$ centroid distance of 3.801 (3) A.

Experimental

In high-dilution conditions, benzene 1,2-dioxybis(ethanoyl chloride) (1 mmol) and ortho-phenylene diamine $(1 \mathrm{mmol})$ were cyclized in chloroform in the presence of triethylamine, affording the title compound. A single crystal of (I) suitable for X-ray analysis was obtained by recrystallization from chloroform/methanol (1:1) by slow evaporation.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=478.53$
Monoclinic, $P 2_{1 / n}$
$a=15.5767$ (9) \AA
$b=15.7746$ (9) \AA
$c=20.5721$ (12) \AA
$\beta=102.541$ (1) ${ }^{\circ}$
$V=4934.3(5) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.288 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5463 \\
& \quad \text { reflections } \\
& \theta=2.3-21.7^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.24 \times 0.20 \times 0.16 \mathrm{~mm} \\
& \\
& \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=28.1^{\circ} \\
& h=-19 \rightarrow 20 \\
& k=-18 \rightarrow 20 \\
& l=-20 \rightarrow 27
\end{aligned}
$$

Data collection

Bruker SMART APEX areadetector diffractometer ω scans
30895 measured reflections 11480 independent reflections 6259 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.166$
$S=0.99$
11480 reflections
653 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{N} 1 A-\mathrm{C} 33 A$	$1.342(3)$	$\mathrm{N} 1 B-\mathrm{C} 33 B$	$1.336(2)$
$\mathrm{N} 1 A-\mathrm{C} 2 A$	$1.418(2)$	$\mathrm{N} 1 B-\mathrm{C} 2 B$	$1.434(2)$
$\mathrm{C} 7 A-\mathrm{N} 8 A$	$1.426(2)$	$\mathrm{C} 7 B-\mathrm{N} 8 B$	$1.409(2)$
$\mathrm{N} 8 A-\mathrm{C} 9 A$	$1.348(3)$	$\mathrm{N} 8 B-\mathrm{C} 9 B$	$1.348(2)$
$\mathrm{C} 9 A-\mathrm{O} 10 A$	$1.213(2)$	$\mathrm{C} 9 B-\mathrm{O} 10 B$	$1.218(2)$
$\mathrm{C} 33 A-\mathrm{O} 34 A$	$1.220(2)$	$\mathrm{C} 33 B-\mathrm{O} 34 B$	$1.208(2)$
$\mathrm{O} 17 A-\mathrm{C} 16 A-\mathrm{C} 15 A$	$122.5(2)$	$\mathrm{O} 17 B-\mathrm{C} 16 B-\mathrm{C} 15 B$	$122.9(2)$
$\mathrm{O} 17 A-\mathrm{C} 16 A-\mathrm{C} 11 A$	$117.2(2)$	$\mathrm{O} 17 B-\mathrm{C} 16 B-\mathrm{C} 11 B$	$117.8(2)$
$\mathrm{C} 23 A-\mathrm{C} 24 A-\mathrm{C} 25 A$	$117.3(2)$	$\mathrm{C} 23 B-\mathrm{C} 24 B-\mathrm{C} 25 B$	$118.9(2)$
$\mathrm{C} 19 A-\mathrm{C} 24 A-\mathrm{C} 25 A$	$124.5(2)$	$\mathrm{C} 19 B-\mathrm{C} 24 B-\mathrm{C} 25 B$	$122.6(2)$
$\mathrm{C} 33 A-\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$-40.3(3)$	$\mathrm{C} 33 B-\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	$64.6(3)$
$\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{N} 8 A-\mathrm{C} 9 A$	$45.2(3)$	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{N} 8 B-\mathrm{C} 9 B$	$-13.5(3)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 26 A$	0.86	2.01	$2.691(2)$	135
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 26 B$	0.86	2.00	$2.662(2)$	134
$\mathrm{~N} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} 17 A$	0.86	1.99	$2.677(2)$	136
$\mathrm{~N} 8 B-\mathrm{H} 8 B \cdots \mathrm{O} 17 B$	0.86	2.10	$2.722(2)$	129
$\mathrm{~N} 8 B-\mathrm{H} 8 B \cdots \mathrm{~N} 1 B$	0.86	2.42	$2.791(3)$	106
$\mathrm{C} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 34 A$	0.93	2.41	$2.809(4)$	106
$\mathrm{C} 6 A-\mathrm{H} 6 A \cdots \mathrm{O} 10 A$	0.93	2.53	$2.866(4)$	102
$\mathrm{C} 6 B-\mathrm{H} 6 B \cdots \mathrm{O} 10 B$	0.93	2.24	$2.820(3)$	120
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 10 A$	0.93	2.34	$2.694(3)$	102
$\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 10 B$	0.93	2.38	$2.719(3)$	101
$\mathrm{C} 15 A-\mathrm{H} 15 A \cdots \mathrm{O} 10 B$	0.93	2.59	$3.517(3)$	173
$\mathrm{C} 28 A-\mathrm{H} 28 A \cdots \mathrm{O} 44 B$	0.93	2.25	$3.132(3)$	156
$\mathrm{C} 15 B-\mathrm{H} 15 B \cdots \mathrm{O} 10 A^{\mathrm{i}}$	0.93	2.49	$3.376(3)$	158
$\mathrm{C} 18 B-\mathrm{H} 18 C \cdots \mathrm{O} 10 A^{\mathrm{i}}$	0.97	2.33	$3.233(3)$	154
$\mathrm{C} 25 B-\mathrm{H} 25 C \cdots \mathrm{O} 34 A^{\mathrm{i}}$	0.97	2.59	$3.052(3)$	109

Symmetry code: (i) $x-1, y, z$.

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0872 P)^{2}\right)
$$

H atoms were positioned geometrically and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic), 0.96 (methyl) and $0.97 \AA$ (ethylene), $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{C})$ for other H atoms. The methyl groups were allowed to rotate but not to tip.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University with Potential for Excellence Programme.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Cameron, K. S., Fielding, L., Mason, R., Muir, A. W., Rees, D. C., Thorn, S. \& Zhang, M. Q. (2002). Bioorg. Med. Chem. Lett. 12, 753-755.
Christian, A. E., Byun, H. S., Zhong, N., Wanunu, M., Marti, T., Furer, A., Diederich, F., Bittman, R. \& Rothblat, G. H. (1999). J. Lipid Res. 40, 14751482.

Ettmayer, P., Billich, A., Hecht, P., Rosenwirth, B. \& Gstach, H. (1996). J. Med. Chem. 39, 3291-3299.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

